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Spin glasses in the limit of an infinite number of spin components
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We consider spin glass models in which the number of spin componeisténfinite. In the formulation of
the problem appropriate for numerical calculations proposed by several authors, we show that the order
parameter defined by the long-distance limit of the correlation functions is actually zero and there is only
“quasi-long-range order” below the transition temperature. Nonetheless, there can be a finite temperature phase
transition where the decay of correlations changes from exponential to power law. We also show that the spin
glass transition temperature is zero in three dimensions so power-law behavior only odcatsiatthis case.
We also argue that the order of limits}— c« andN— o is important, whereN is the number of spins.
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[. INTRODUCTION size. In the latter case, we find that fbx Tggthe spin glass
correlations decay with powerof the distance and tend to
zero forr— o, so the order parameter, defined in terms of
the long-distance limit of the correlation function, is actually
zero. Nonetheless, there can still be a transitiofggtsepa-
rating a high temperature phase, where the correlations decay
exponentially, from the low temperature phase where they
decay with a power law. In particular for the infinite range
model Tsg=Teg=1. By contrast, if one takedl— o first
with m finite, the power law decay eventually changes to a
constant(of order of 1/m) at larger and so, multiplying by
m, a nonzero spin glass order parameter can be defined,
@vhich is equivalent to that of Ref1].

Overall we conclude that to obtain sensible physical re-
sults, the limitN— o should be takefiirst. As a result, the
approach of Refq.3,4,8,9, which performs then— co limit

It is of interest to study a spin glagéSG model in which
the number of spin componentsis infinite, because it pro-
vides some simplifications compared with Isiig=1) or
Heisenbergm=3) models. For example, in mean figlblF)
theory(i.e., for the infinite range modgethere is no “replica
symmetry breakingf1] so the ordered state is characterized
by a single order parametegy rather than by an infinite num-
ber of order parameteriencapsulated in a functiog(x)]
which are needef] for finite m.

There has recently been renewed intef8s4] in the m
=oo model, and the interesting result emerged from thes
studies that theffectivenumber of spin components depends
on the system siz&l and is only really infinite in the ther-
modynamic limit. One motivation for the present study is to

investigate some consequences of this result. first, should be considered as the zeroth order term inna 1/

Further motivation for our present study comes from ear- ; ; ;
. . X expansion which needs to be resumm#&d] in order to get
lier work by two of us{5] Wh'Ch argued that the_lsotrop}CY results for large bufinite m The latter would avoid the in-
(m=2) and Heisenberg spin glasses have a finite spin glaséonsistencies in the strictiyn=s- results
trapsition temperaturéggin three dimensiqns, like the I;ing We give phenomenological arguments for these conclu-
spin glass. The results of Rdb] also indicate thafgg is

: X - sions and back them uffor the case wheren— < is taken
very Iﬁ‘é’ compared with the mean field transition temperas;rgy) by numerical results at zero temperature. We also find,
ture Tg; and decreasesvith increasingm; see Table I. The

; ME ) from numerical results at finite temperature, tHat/ Tag
data in Table | suggest thdke/ Tsg may be zero in then  _q i, three dimensions fan=c, consistent with the trend of
=co limit in three dimensions, and we investigate this possihe results in Table 1.
bility here. In Sec. Il we discuss the model and the methods used to

_In this paper, we study then=cc SG model; both the g4y it numerically. In Sec. Ill we describe our results at
infinite range version and the short-range model in three and

two dimensions. We find that we need to carefully specify TABLE I. Estimates of the spin glass transition temperature,
the order in which the limitsn— o and the thermodynamic relative to the mean field valuggé =+z/m, see Eq(2), for differ-
limit N—cc are taken. In Ref[1], the N— limit is taken  ent values ofm for the three-dimensional simple cubic lattice
first (since a saddle-point calculation is performesd the (z=6). The factor of 1M in TSG appears because the spins were
m— o limit is taken at the end. However, in the formulation normalized to unity in Refd5~7], rather than ta''* as here. For
of them=2 problem which has been proposed for numericalth® model used in this papéis is finite for m— oe.

implementation in finite dimension$,4,8,9 and which we

- ) . . - MF MF
use here, the limitn— o is taken first for a lattice of finite ™M Model Tse Tse Tsd/ Tse
1 Ising 2.45 0.9[6,7] 0.40
2 XY 1.22 0.34 [5] 0.28
*Homepage: http://bartok.ucsc.edu/peter; electronic address; Heisenberg 0.82 0.165] 0.20

peter@bartok.ucsc.edu
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T=0 for both short-range and the infinite-range model, while
in Sec. IV we describe finite temperature results for short- °
range models. Our conclusions are summarized in Sec. V.

1. MODEL AND METHOD m

We take the Edwards-Anders¢hl]| Hamiltonian

H=-2%S"S, D
(i.i)

where the spin§; (i=1,...,N) are classical vectors witm
components and normalized to lengtit’?, i.e., S’=m. As
we shall see, this normalization is necessary to get a finite
mean-field transition temperature in ting=c. The J; are
independent random variables with a Gaussian distribution
with zero mean. We consider both the infinite range model
and short-range models with nearest-neighbor interactions ir N
two and three dimensions. For the "Me range model, the FIG. 1. A plot of the average effective number of spin compo-
standard deviation is taken to be \N-1 while for the  onis mo as a function of system sié for a fixed, finite number
short-range models the standard deviation is set to be unity spin componentsn. For smallN, my~ N, but oncemy, hits the

According to the mean field approximation, the spin glassctual number of spin components it sticks atm asN is further
transition temperature Is increased.

2
T8G = @[2 Jﬁ]m, (20 m=o problemdirectly at T=0, using the following method.
mi av At zero temperature there are no thermal fluctuations so each
where[- -], indicates an average over the disorder. HenceSPin lies parallel to its local field, i.e.,
for the infinite range modelwhere mean field theory is ex- sS=H'XJs @)
act, Eq. (2) gives Tge=T&E=1, while for the short-range B
case it givesTeg=\z, wherez is the number of nearest s _ _ _
neighbors(four for the square lattice and six for the simple Wherem=<H; is the magnitude of the local field on site

cubic lattic. Remarkably, it was shown by Hasting®] that these local
As shown in other worK3,4,8,9, the problem can be fields are precisely the zero temperature limit of ithen Eq.
simplified form=2. The spin-spin correlation function, (5). Hastings[3] also showed that the average number of

independent spin components which are nonzero in the

C. = £<51 'S) 3) ground state, which we caithy, cannot be arbitrarily large,
T m 1 but satisfies the bound
is given by mp < V2N. 8
T_lcij = (A—l)”., (4) This means that one can always perform a global rotation of

the spins such that only, components have a nonzero ex-

pectation value and the remainimg—m, components van-
Ay =H;i8 -y, (5)  ish. Thus one can think ah, as theeffective number of spin

componentsif m is finite, then, at some value df, m,
and theH; have to be determined self consistently to enforceyould equal the actual number of spin componentét this
(on averagpthe length constraint on the spins, point, all spin components are used g “sticks” at the
Ci=1. (6) valuem asN is further increased; see Fig. 1.

More generally we can write E@8) as

where

Angular bracketsy- - -), refer to a thermal average for a given
set of disorder. Equatio6) with i=1,...,N representdN Mo~ N (mo <m) ©)
equations which have to be solved for theinknownsH;. In  and the bound in Eq8) givesu<1/2. Later, we will deter-
Sec. IV we will solve these equations numerically for a rangemine . numerically for several models. For Eq8)—(6) to
of sizes at finite temperature. We emphasize that in Eqde valid we needn>m, which corresponds to the curved
(3)—(6) the limit m— <0 has been taken with finite. Thisis  part of the line in Fig. 1. As discussed above, this corre-
the opposite order of limits from that in the analytical work sponds to taking the limitn— oo first, followed by the limit
of Ref. [1] where N—o was taken beforen—~. As we N-— . Sincem, increases withN one needs larger values of
shall see, the results from the two orders of limits are differ-m for larger lattice sizes. This will be important in what
ent. follows.

Equations(3)—(6) are not well defined af=0. However, We therefore see that we can numerically solve tine
Aspelmeier and Moorg4] pointed out that one can solve the =« problem atT=0 on a finite lattice by taking a number of
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spin components which ifinite but greater tharm,, and How can we reconcile this vanishing order parameter with
solving Eqgs.(7). To do this we cycle through the lattice, and earlier result[1] that the order parameter in the infinite-
at sitei, say, we calculatél; from range model is nonzero beloWgg=1, and in particular is
unity at T=0. The difference comes in part becawgein
H, = miuz D Jijsj‘ . (10) Ref. [1], which we calloj .y, is m times ourg?, and so
J m
2

. . =m¢~— (T=0). 14

we then sef, to the value given by Ed7) so it lies parallel Gasir = mef Mo (=0 (14

to its instantaneous local field. This is repeated for each sit . .
i, and then the whole procedure is iterated to convergenc lote t_hat since W? tf”“ﬁ*",ﬁw' the difference betv\(eetm an'd
Although spin glasses with finitex have many solutions of 9AXKT 1S hotjust a .tr|.v|§1l scale factor. More pr'eC|_ser, since
Egs. (7), it turns out that form=c (in practice this means m is taken to infinity beforel\_leoo, mp IS just an
m>m) there is a unique stable solutiph?], so the numeri- N-dependenf[ C‘?”Staf‘t and the r_|ght-hand side of @¢)
cal solution of Egs(7) is straightforward. We will discuss does not eX'St.N't.h this o_rder of Ilm!ts. However, Rgi{l]
our numerical results &F=0 using Eqs(7) in Sec. Ill, and  Performs the limitN— first, for whichme=m, see Fig. 1,

here we simply note that we do indeed find a unique solutior‘?lnd the "”?" .Of. Eq(14) is well dgfmed ifmis then allowed
of these equations. to tend to infinity. Hence the difference between our results

Next we consider the order parameter in spin glasses foE?nd those of Refl1] is that they takeN— = first, whereas

m=c. In the absence of a symmetry breaking field, one deWVe takem—  first.
" y y g Going back to the calculation d;;, if one sums[Cﬁ]a\,

fines the long range order paramedgdny the behavior of the 9 c ) i ]
spin-spin correlation functiohcﬁ]a\, at large distances, i.e., for thelmfmlte range mpdgl over all pairs qf sites we find that
the spin glass susceptibilitysg at T=0 is given by

q?= lim [C}la, (shortrangg, (11) 1 ,
Rij—e XsG= NE [Cijlav=1+(N- 1)g” = Ng? ~ N'™*. (15)
where R; =|R;-R;|. For the infinite-range model, any dis- v
tinct pair of sites will do, and so Turning now to the short-range case, we expect jaat
ot ~ N will still be true, which implies that correlations de-
q°=[Cjjlay (i # ) (infinite range. (12 cay with a power of distance. Assuming tH& J,,~ 1/R}

We now give phenomenological arguments, which will befor some exg)oneny, then integrating over all up tor=L
supported by numerical data in Sec. Ill, tipobtained from  (WhereN=L) and requiring that the result goes B,
Egs. (11) and (12), in which C; is determined by Egs. givesy=du, i.e.,

(3)—6), is actually zero for m=«, and that, at best, spin 1
correlations have only “quasi-long-range order.” For the [C%]av
short range case, this means t[@%]a\, decays with a power

of the distanceR;;, while for the infinite range model the Such power law decay is often called quasi-long-range
correlation function in Eq(12) tends to zero with a power of order. We expect that E¢16) will be true quite generally at

N. T=0 and everywhere belowgg if Tgg>0. Note that this

To see why this is the case, we take0 and consider implies thatq=0 according to Eq(11). Above Tgg, [Cﬁ]a\,
first the infinite-range model. For a givé) the spins “splay  will decay to zero exponentially with distance.
out” in mp~N* directions. We expect the spins to point, on  If mis large but finite, theiCf 1,, will saturate wherR;
average, roughly equally in all directions in this js sufficiently large that all the spin components are used.
mg-dimensional space. No@; in Eq. (3) is equal to co®);  This happens whefC?,,~1/m, i.e., for R; =m%. In this
where g; is the angle betwee§ andS;. We take the square case,q2,.;=mc will be finite according to Eq(11). Al-
and average equally over all directions. To do the averaggnough, according to our definitiom, is always zero, there
take a coordinate system with the polar axis al@gs0  can be a finite temperature transitionTat Ts which sepa-

~— (16)
R

6= 6; the polar angle of5;. Then we have rates the regiofl > Ts Where correlations decay exponen-
my tially, from the regionT <Tggwhere correlations decay with
S(D) a power law. Mathematically this is thg same behavior as
) 5 1 100 1 B occurs in the Kosterlitz-Thouless-Berezinskii theory of the
q° =[C;lav=(coS ) = §<S§> “m 2 m N7, two-dimensionalXY ferromagnet.

In Secs. Il A and III B we will provide numerical support
(13 for Eq. (15) for the infinite-range and short-range cases, re-

where we used the result that the average is roughly the San%gectlvely.

for all the my spin components. Singe will turn out to be IIl. RESULTS AT ZERO TEMPERATURE

nonzero it follows thatthe order parameter tends to zero -

with a power of the size of the system. The same will be true A. Infinite range model

at temperature$ < Tgg While aboveTgg the order parameter We consider a range of lattice sizes ugfNe2048 and for
as defined here will vanish faster, as\L/ each size the number of samples is shown in Table II.
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TABLE Il. Number of samples used in the=0 studies of the T T TTTTT T T T TTTT T
infinite range model. 0.4+ —
N Nsamp slope = —u = —0.40
32 1000
64 1000
128 1000
256 1000 . 0.2
512 1000 o
1024 777
2048 302
0.1 Infinite Range n
The average number of nonzero spin components in the L T=20 .
ground state is given by E9), for which it has been shown 0.08— ]
that[3,4] N |
e e . I I | I| 1 I I| |
w=2/5 (infinite range 17 102 108
exactly. This result has been confirmed numericgdly Our N

results foru are shown in Fig. 2 and indeed giyeclose to
2/5. The small deviation is presumably due to corrections to FIG. 3. The square of the order parameteTa0 for infinite
scaling. range model. As expected, it decreases hké with u=2/5.

We also calculated? at T=0 from Eq.(12). In Eq.(3) the
thermal average---), is unnecessary, and the spin direc-  Qur results foru are shown in Fig. 4, indicating that
tions are determined by solving Eqg) and(10). The results  =0.33, definitely different from the infinite range result of
for are shown in Fig. 3, showing that it vanishes with expo-2/5. The results foysg as a function oN are shown in Fig.

nent -u as a function olN, as expected from Eq13). 5. We see thajsg grows with an exponent 1 with the
same value ofu as in Fig. 4. We therefore find thatu
B. Short-range models =1.0, and so, from Eq.16), the spin glass correlations de-
cay as

First of all we describe our results for three dimensions.
The number of samples is shown in Table IlI.

1
2/\/— — —
T T T T T [CijJav R, (d=3,T7=0). (18)

i
20— —
(Itis of course possible that power Bfj may not be exactly
-1)
Next we describe our results for two dimensions. The
number of samples used is shown in Table IV. Our results for
10 ] wp are shown in Fig. 6, and give =0.29. The data folysg
- - are shown in Fig. 7. We see thgig increases abl*™ with
o 8 — |
E - — TABLE 1ll. Number of samples used in the calculations for the
61— ] short-range model in three dimensions.
- - T=0 T>0
4 Infinite Range ] L Nsamp (Mp) Nsamp (Xs@) Nsamp
T=20 3 1000
i 4 1000 1000 100
| IIIIII| | 1 1 IIIIII | 6 1000 1000 100
107 108 8 1000 1000 100
N 10 1000
12 1105 1105 100
FIG. 2. The average number of nonzero spin components in the 16 785 785
ground staten, as a function ol for the infinite range model. We 24 500

see thaim increases likeN* with u close to 2/5 as expected.
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T T TTTT T T TTTTT T TTT TABLE IV. Number of samples used in the calculations for the
short-range model in two dimensions.
T=0 T>0
slope = u = 0.33 L Nsamp (Mo) Nsamp (Xs0) Nsamp
10 L - 4 1000 1000 1000
81— —] 6 1000 1000 1000
o — — 8 1000 1000 1000
£ 61— — 10 1000
B | 12 1000 1000 1000
14 1000
4 — — 16 1000 1000 1000
3D 18 1000
- T=20 . 20 1000
22 1000
24 1000 500
| | IIIIII| | | IIIIII| | (| 28 1000
10 102 108 32 1000 1000 309
N 48 472 136
1016 1016

FIG. 4. The average number of nonzero spin components in the
ground statem, as a function ofN for the short-range model id
=3. We see thatn, increases likeN* with p=0.33.

IV. RESULTS FOR SHORT-RANGE MODELS AT FINITE

TEMPERATURE
the sameu as determined from Fig. 6. We therefore find that

du=0.58, and so, from Eq(16), the spin glass correlations ~ We have determined finite temperature properties by solv-
decay as ing Egs.(4)—(6) self-consistently using the Newton-Raphson
method. We start at high temperatufe; T, say, and take our
initial guess to beH;=1/B which is the solution obtained
[C, 12~ oiss (d=2T=0). (19)  Perturbatively to first order in 1. We then solve the equa-

i tions at successively lower temperature$;>T,>T,

103

slope = 1-u = 0.67
500

XSG

100

I|IIII|
|IIII|

50

T
3
Il
(@)

100 103 104 10 107 103
N N

FIG. 5. The spin glass susceptibility for the short-range model in  FIG. 6. The average number of nonzero spin components in the
d=3 for different system sizes. As expected it varie®N&%*, where  ground statem, as a function oiN for the short-range model id
un=0.33 was also found in Fig. 4. =2. We see thain, increases likeN* with ©=0.29.
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[ T IIIIIII| | IIIIIIII | ' TT] 16
500— — E
- slope = 1-p = 0.71 . 1.4 —
. 1.2 =
100 4 W 1 E
5 ] — =
< 1 0.8 =
pu— n i
- > 3
| 0.6 =
7 0.4 3
10 = 0.2 =
- | IIIIIII| | IIIIIII| | | 11T -E.
10 100 103 0
N 0 1 2 3 4 &5 6
T Ll/u
FIG. 7. The spin glass susceptibility for the short-range model in
d=2 for different system sizes. As expected it varie®N&%, where FIG. 9. A scaling plot of the spin glass susceptibility in Fig. 8
n=0.29 was also found in Fig. 6. assuming a zero temperature transition.
>T, -+, and obtain the initial guess for tié& at temperature 5
T..1 by integrating the equatior(g) Bjj = (BC;j)", (21
dH, -1
E - Z (B )ij’ 20 from Bi to Biyq (B=1/T).
' Results forysg in d=3 are shown in Fig. 8, in which we
in which scaled the vertical axis byd*# (=L?) so the data collapse
at T=0. If we assume a zero temperature transition, the data
T=0. If p iti he d
1.6 lIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIII]IIIIIIIIIII:_I; Sh0u|dfittheﬁnite_sizeSCa“ngform
1.4 L =
3D s 4 Z Xsa= LUTHX(LIT), (22)
1.2 3 °* 6 =
#-ﬁ i = 8 E whereX(x) — const forx— 0, and the power law prefactor in
1 i * 12 3 front of the scaling functiorX(x) then gets theT=0 limit
b k=gl E correct. Figure 9 shows an appropriate scaling plot with
N 0.8 Ny i = =1.23. Apart from the smallest size=4, the data clearly
8 * 28 =& 3 collapse well. By considering different values ofwe esti-
~ 0.6 * @ . E mate
. *» = . ° & =
- i 3
0.4 T ®N.5 = »=1.23+0.13 (d=3). (23)
. "L " =
B - » (= . . .
0.2 L™ . o This result can be compared with that of Morgs al. [9]
* e Tg who quoter=1.01+£0.02. Since our results cover a larger
0 TITITITI [TTRTTTNTI INTTRTTTNI AVTTRTITA FTRTIAOn b= range of sizes and have better statistics, we feel that the error
0O 02 04 0.6 0.8 1 bars of Morriset al. are too optimistic. Assuming this, our
T result is consistent with theirs.

We should, however, also test to see if the data can be
FIG. 8. The spin glass susceptibility as a function of temperaturditted with a finite value fofTsg To do this, it is convenient

in three dimensions. The vertical axis has been divided %y*),  to analyze the correlation length of the finite systém,and
in which we took x=1/3 in order to collapse the data @&&=0  plot the dimensionless ratig /L which has the expected
according to the data in Figs. 4 and 5. scaling form[5,13]
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0.6 IIIIIIIIIIIIIII I'I'II'I'IFI'II'I|IrI'IH‘IFI'III'I!I|III'III'|Ii ]_6 H
i = 3
045 - = 1.4 =
0.5 e/l L = =
, ST - = 1.2 .
% et =
IIIIIIIIIIIlIIIIIIIIII—l: g ]- _E
= -
= < 0.8 —
- ] 3
— i E
- < 0.6 =
=  E
- g =
= 3
o] 0.2 =
3 E
0.1- 0
O 02 04 06 0.8 1 0123456 738 910
T T L/

FIG. 10. The main figure is a plot of_ /L againstT in three FIG. 11. A scaling plot of the data foysg in two dimensions,
dimensions. The inset showi/L at T=0 as a function oL.. The  assuming a zero temperature transition. In the vertical a4s.is
dashed line is a guide to the eye. divided by L41-#) = | 142 50 that the data collapse &£0.

& F(LY(T-Tso) (24) - -
L S We have also computed the correlation length_ in two

_ o _ dimensions, and show the data in Fig. 12. The curves be-
without any unknown power of multiplying the scaling come independent of size, for lardie at T=0, confirming
functionF. Hence the data for different sizes should intersecthat Tgg=0. A scaling plot of the data for the largest sizes

at Tsg and also splay out belowss To determineé, we  (L=24) in Fig. 13 has the best data collapse with0.65

Fourier transforn{Cf 1, to getxsg(k) and then us¢5,13 and altogether we estimate
;= 1 ( xsc(0) )1’2 25 »=0.65+0.05 (d=2, fromé&/L), (27)
L— . - ]
2 sin(Kmin/2) \ xsa(Kmin) which is consistent with our estimate frogag in Eq. (26),

where k.= (27/L)(1,0,0 is the smallest nonzero wave and with the result of Morrigt al. [9].

vector on the lattice.
The results are shown in the main part of Fig. 10. The V. CONCLUSIONS

data do not intersect at any temperature, but seem to be ap- \ye have considered the spin glass in the limit where the
proachlng an m_tersecﬂon at=0 for the larger sizes. To test spins have an infinite number of components. In the formu-
out this possibility, we have computed the correlation lengthagion of this problem appropriate for numerical calculations
directly atT=0, from the solut|on_0f Eq.ﬂ) and(10), \_Nhere [3,4,8,9, where the limitm— o is taken withN finite, we

we can study larger sizes than in the finftdermulation of  finq that the order parameter, defined in terms of correlation
Egs.(3)«6). The data are shown in the inset of Fig. 10. It fynctions in zero(symmetry-breaking field, vanishes. In-
indicates, fairly convincingly, thag /L approaches a con- stead, belowTsg there is only quasi-long-range order in
stant forL — atT=0, and hence that there is a transition at, hich the correlations decay to zero with a power of dis-

T=0. . . ) tance. The transition temperatufgg can be finite; it sepa-

Ind=2itis well established thaiss=0 even for the ISing 5165 the region at low temperature, where the correlations
case. A scaling plot foksg for m=cc in d=2, corresponding  gecay with a power of the distance, from the region at high
to Eq.(22), is shown in Fig. 11 with=0.72, which gives the  tomperature where correlations decay exponentially.

best data collapse for larger sizes, atid—x)=1.42 which Whereas we define the order parameter in terms of the
is obtained from the'=0 results in Sec. lll. Again the data |ong distance limitof the correlation functions, Aspelmeier
scale well. Overall we estimate and Mooref4] define alocal order parameter in terms of the

contribution to the constraint in E¢6) that comes from the
= + =
v=072£0.05 (d=2, fromysq). (26) eigenmodes with zero eigenvalue of the mathix. They
This is consistent with the results in Mores al.[9] who ~ argue their order parameter is related to the susceptibility in
quoter=0.65+0.02. the presence of a small field, where the limitN— o is
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E % 48 ]
|°|4B| I I O I | | (I | O ;IlllllII]IIIIIIIIIlIIIIIIIII|IIIIIIIII|IIIIIIIIl|IlIIIIIIlIIIIIIIII'_l'
OO 0.2 0.4 0O 10 20 30 40 50 60 70
T TL1/v
FIG. 12. Data for /L as a function ofT in two dimensions. FIG. 13. A scaling plot of the data from the largest sizes for

Clearly the data for larger sizes are mergingTat0 indicating a  é./L in two dimensions assuminfsg=0.

transition atTsg=0. The inset shows data f@f/L at T=0 confirm-

ing that the data become independent of siz&=0. The dashed

line is a guide to the eye. already mentioned that there is only quasi-long-range order
below Tg¢ in this case, in contrast to finite. Another ex-

taken before the limih— 0 in order to break the symmetry. ample of the special features of the=< limit is that Green

From numerics on the infinite-range model, Aspelmeier ancet al.[14] find the upper critical dimension, above which the

Moore claim that their order parameter agrees with that ofritical exponents are mean field like, to Hg=8, whereas

Almeidaet al. [1]. for finite m one hasd,=6. Our result thalsg=0 for m=<« in

However, in a sensible physical modelny reasonable d=3 isconsistenwith the claim of Viang 15] that the lower
definition of the order parameter should give the same aneritical dimension(below which Tsg=0) is alsod,=8, but
swer. In particular, one should be able to obtain the square afurrently we cannot say anything specific about dimensions
the order parameter from the long distance limit of the cor-above 3.
relation function (off-diagonal long range ordgrin zero We find, not surprisingly, thatsg=0 also in two dimen-
field, and get the same answer as the local expectation valgions. Our results for the correlations length exponent at the
of the spin in the presence of a small symmetry breakingr=0 transition ind=2 and 3 are consistent with those of
field. This does not appear to be the case fomtivec model ~ Morris et al. [9].
if the limit m— oo is taken beforéN — . Finally, we note that Aspelmeier and Modr have pro-

On the other hand, if the thermodynamic limit,—«, is  posed that then=c model is a better starting point for de-
taken withm large but finite, then the correlations saturate atscribing Ising or Heisenberg spin glasses in finite dimensions
a value of order 1rh at large distance, and so a finite spin than the Ising model. We have argued in this paper that the
glass order parameter can be defined from the long distan@pin glass withm strictly infinite is not a sensible model, but
limit of the correlation functions. This seems to agree withone rather needs to consider large but finite. Hence the
the order parameter found in the analytical work of R&f, = m=« formulation proposed by Aspelmeier and Modw
and is presumably the same as the local order parameter ina@d otherd3,8,9 would need to be extended to an ex-
symmetry breaking field. Hence there seems to be no incorpansion and evaluated, at the very least, to orden. More
sistency if the limitN— < is taken first. probably an infinite resummation would be need&d] to

We have also studied thm=c model in three dimen- obtain sensible results in the spin glass phase, but this may
sions, finding the transitiofwhere correlations change from be feasible.
exponential to power layto be at zero temperature, in con-
trast to the situation fof5,13] m=1, 2, and 3. We suspect
that Tsg=0 only in them=cc limit, rather than for alim less We acknowledge support from the National Science
than someénonzerg critical valuem, since spin glasses with Foundation under Grant No. DMR 0337049. We would like
m=o seem to have unique features. For example, we hav® thank Mike Moore for helpful correspondence.
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